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Note 

On Distortion Functions for the 
Strong Constraint Method of Numerically 
Generating Orthogonal Coordinate Grids 

1. TNTRODUCTI~N 

An important advance in the application of finite difference techniques to com- 
plicated problems in fluid mechanics has been the development of methods to con- 
struct boundary-litted curvilinear coordinates so that solutions can be obtained on 
domains of quite general shape without loss of accuracy in the application of boun- 
dary conditions. Extensive surveys of research in grid[ generation are presented in 
Thompson et al. [ l] and Eiseman [Z], where the latter focuses on the importance 
of grid generation techniques in fluid mechanics. There is a broad spectrum of coor- 
dinate grid types that can be created, either analytically or numerically; these grids 
can be orthogonal, nonorthogonal, conformal, or nonconformal. 

The most common approach to numerically construct curvilinear coordinate 
grids in two-dimensional or axisymmetric systems is to solve a pair of elliptic 
partial differential equations, usually subject to Dirichlet conditions at the four 
boundaries, for a pair of functions x( 5, q ), y(<, ye) which represent a discrete 
mapping between the physical (x, y) space and the boundary-fitted curvilinear 
(computational) (5, yl) space. A variation on methods of this type that has proven 
extremely powerful in the study of free surface flow problems in fluid dynamics is 
the strong constraint orthogonal mapping technique of Ryskin and Lea1 ji3] 
(henceforth referred to as R & L). 

The strong constraint method is a one-step method of mapping a discrete set of 
points that are evenly distributed inside a unit square in the (;“, ye) curvilinear coor- 
dinate domain onto a discrete set of points in (x, y). ‘The two coordinate grids are 
related via the metric tensor, and to ensure orthogonality of the generated gri 
(x, v), the off-diagonal components of the metric tensor are required to be zero. 
The diagonal components of the metric tensor-referred to as the scale factors by 
R & L-are denoted by h, and h,. The ratio h,(& r)/h&& q) is called the distortion 
function and is denoted by f(5, q). In the strong constraint method of R & L the 
distortion function is specified as a function of position in the (l, q) domain 
[0, l] x [0, 1) as input to the method to provide control over the grid spacing. In 
contrast, f(<, q) E 1 for a conformal mapping. 

The most important limitation of the strong constraint method, in our opinion, is 
that no a priori criteria was given for choosing a distortion function f(5, r) that 
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guarantees the existence of an orthogonal map. In previous applications of the 
method, we have utilized functions of the product form 

“05, fl) = @(5) @(rl) (1) 

but this choice was ad hoc and the existence of an orthogonal map was only 
demonstrated, after the fact, by numerical construction. In the present note, we 
provide a simple proof that if f is of the form (l), then the mapping equations with 
their associated boundary conditions comprise a well-posed problem and the 
existence of an orthogonal coordinate grid is guaranteed (subject, of course, to dis- 
cretization error in the numerical implementation and certain necessary restrictions 
on @ and 0). We do not claim that the use of a distortion function of product form 
is a necessary condition for the existence of an orthogonal map, only that it is 
sufficient. 

Qualitatively, a distortion function of this form corresponds to a stretch of coor- 
dinate lines t independent of q, and a stretch of ye lines independent of [. Thus, it is 
not only sufficient, but appears as a natural choice for construction of a boundary- 
fitted coordinate map which allows control of spacing between coordinate lines 
while still remaining orthogonal. 

2. FORMULATION 

In the strong constraint method, as formulated by R & L, the mapping functions 
~(5, r]), ~(5, q) relating the natural Cartesian coordinates (x, y) and orthogonal 
boundary-fitted coordinates (5, y) are obtained as the solution of a pair of 
covariant Laplace equations 

!2! 

in which the distortion function f(<, y) is specified in advance to provide control 
over the grid spacing. Following the conventions of R & L we consider the mapping 
problem on a bounded domain, with the coordinate line 5 = 1 corresponding to the 
free surface r*, while 5 =0 corresponds to the origin in the (x, y) space. If a 
mapping is required on an unbounded domain exterior to r*, a preliminary 
conformal inversion can be applied to convert the exterior problem to an equivalent 
interior problem. It is therefore sufficient here to consider only the bounded 
domain, interior case. The coordinate 5 is clearly of a generalized radial type, while 
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y is the corresponding orthogonal, angular coordinate. We define q such that 
0 <q < 1, and require periodicity, that is, 

The origin is defined by 

and we require, in addition, 

y(l,O)=Q. 13c) 

The conditions (3b) and (3~) fix a particular translation of the coordinates, and the 
“starting point” of the angular coordinate ‘1, respectively. 

In free-boundary problems, the geometry of the free surface is unknown and 
obtained as part of the solution. In the present framework, this boundary is 
denoted by 

r* = {x(1, VI)> Y(l, rl): 7 (5 m 1,:. (4) 
An obvious generic approach to determining ~(5, q), ~(5, 4) is via an iterative 
process starting from some initial guess for the free surface shape. However, this 
cannot be done by simply incrementing x(& 9) and ~(5, y) directly at each step, 
because this overdetermines the map when both f(& q) and orthogonality are 
specified. Instead, R & L developed a procedure for generating successive values of 
(ax/X), _ 1 and (a~/@), = I at each step, by incrementing the scale factor hS( 1,~ ). 
The scale factors of the system are defined by 

Hence, the problem is to obtain a pair of mapping functions x, 4’ by solution of 
Eq. (2) subject to conditions (3) for specified values of the scale factor h:( 1, ? ). The 
question is whether an orthogonal map exists for the particular choice of distortion 
function f( <, v]) given by Eq. ( 1). 

3. THE PROOF 

It must be shown that there exists a transformation path between the unit square 
in the (5, q) domain and the desired domain 9 in the (x, JJ) plane. This will be 
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‘IL r = f,(t) 

e = f (7) 
1 77 

:I 277 8 
v = rsin B 
u = rcosB 

(;D:/ ,x. F(u+iv)= x+iy (j:->, ; 

FIG. 1. Schematic representation of the transformation path between the finite domain and a unit 
square in the computational domain. 

accomplished by breaking the path up into three steps (see Fig. l), with the first 
step being a change of variables r =fi(5) and 0 =fJq), from a unit square in the 
(5, q) computational domain to a rectangle in a circular cylindrical-type (r, 0) coor- 
dinate domain (maintaining the radial sense of 5 and the angular sense of q). The 
functions fi(5) and f2(q) are assumed to be one-to-one and smooth,’ and are nor- 
malized and shifted for convenience so that fi(0) = 0, fi(l) = 1, &(O) =O, and 
fi( 1) = 27~ Beyond these elementary restrictions fi and f2 are arbitrary. The 
function fi represents a stretching or shrinking of the 5 coordinate lines, indepen- 
dent of y, and likewise, fi causes a stretching or shrinking of 4 coordinate lines 
independent of 5. The functions fi and fi will be used to construct the distortion 
function J: In this context, freedom in choosing fi and f2 corresponds to control 
over grid spacing. As mentioned above, the coordinate variables r and 0 are circular 
cylindrical-type, and so the rectangle in (r, 0) can be transformed to a unit disk in 
(u, U) space using the relations u = r cos 8 and 2) = r sin 8. The motivation for carry- 
ing out these two coordinate transformations (from (& q) to (r, 0) to (u, v)) arises 
from complex variable theory, where the Riemann mapping theorem guarantees the 
existence of a conformal map connecting a given, nontrivial two-dimensional 
domain to a unit disk. We have an analogous situation here except that for the 
strong constraint method the actual domain 9 in (x, v) is not known, since the 
boundary r* of 9 is itself unknown. What is known instead is h,( 1, q). 

Consider a particular choice for f; namely 

(5) 

1 In theory, fi and f2 should be C” but in numerical implementation this restriction may be relaxed. 
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where f;(t) and f;(q) refer to differentiation with respect to 4 and q, respectively. 
For this choice of distortion function, Eq. (2) on the unit disk reduces to 

ay ay 
=+av’=@ 

The distortion function f(<, q) is a product of the functions fi(r)/f;(<) and f:(q), 
and the form may appear confusing at first glance due to the term fi in the 
numerator. However, this term is present because it is the necessary “length” factor 
required when dealing with angular and radial type coordinate systems. 

The form of Eq. (6) suggests that we seek an analytic function F of the form 
F(W) E F(u + ZU) = x + zy on the closed unit disk u2 + I? d 1. This function maps the 
unit disk onto the domain 9. Direct manipulation shows that specification of 
h&l, y) is equivalent to specifying /Fl, the norm of the derivative of the analytic 
function, on the boundary of the disk. Note that h,(l, v) is assumed to be neit 
zero nor unbounded for the problem as posed to make sense. As a result of the 
Cauchy-Riemann equations 

ax ay ax aJ -=-) -= -- 
au av au ii~’ 

Eq. (6) is identically satisfied. Further, Eqs. (3a)-( 3c) reduce to the very simple 
constraints 

F(O)=0 17a) 

and 

arg(F(1)) =O. (7'0) 

The analytic function F(w) is required to be invertible, so in addition to the above 
three constraints we impose IFI # 0 on the closed disk. 

As mentioned earlier, if r* (or equivalently, the value of F on the boundary of 
the disk) is known, then the Riemann mapping theorern guarantees the existence of 
the conformal mapping F(w), and therefore the existence of an orthogonal mapping 
between (5, q) and (x, y). Here instead we have IF’/ specified on the boundary, and 
it is necessary to prove the existence of F(w). This is carried out as follows: first, 
define the function 

G(u+zv)=Log(F’)=ln IFI +rarg(F’), 
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where the k = 0 branch of the log has been selected. The function I; is assumed 
analytic on the disk, implying that F, and therefore G,2 is also analytic on the disk. 
As a result, specification of IFI on the boundary (of the disk) is equivalent to 
specification of (31 {G} on the boundary. Poisson’s formula immediately gives ‘93 {G} 
in the interior of the disk (r < 1): 

Then, 3(G) = arg{F} is determined in the disk via the Cauchy-Riemann 
equations for G, 

83(G) 8Jl{G} d3{G} aw3 =- ---= -- 
a0 au ’ au a0 ’ 

and subsequent direct integration. Formally, arg { F } = S(U, v) + c1 = 9( u + zu) + c1 , 
where c1 is a real constant resulting from the integration. The total derivative F(w) 
is then recovered as F = IFI exp[r(Y + c,)]. Analyticity of F implies the existence 
of a Taylor series representation in the disk 

F’(w) = e”‘(aO + a, w + . . -), (10) 

where w = u + W. A subsequent complex integration of F(w) yields F(w) to within a 
second complex constant, c2: 

F(w) = c2 + e’ci(ao + $zl w + ..-)w. (11) 

Application of condition (7a) yields c2 = 0, and the real constant c1 represents the 
rotational orientation of the mapping and is fixed by condition (7b). Therefore, the 
mapping F(w) does exist subject to the constraints mentioned above. Thus, by a 
route involving two coordinate transformations and one conformal map, we have 
shown that an orthogonal mapping between (4, q) and (x, v) does exist, and that it 
is determined by specification of h&l, r) along with a special product form for the 
distortion function f: 

4. CONCLUSIONS 

One very important consideration in the strong constraint method of R & L is 
the relationship between the choice of f and the existence of an orthogonal 
mapping. It is intuitive that an arbitrary stretching of a conformal map will yield a 
nonorthogonal mesh, or mapping, and further that a solution to Eq. (2) may not 

’ Since IF”/ # 0 on the disk, G is well defined. 
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even exist for certain choices of J: In this note we have shown that if f is of a special 
product form, represented by Eq. (1) and if h, is specified at one boundary, then an 
orthogonal mapping does exist between (5, q) and (x, y). 
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